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Abstract. A possible explanation for the electroconductivity activation energy temperature 
dependence observed in transition metal oxides is proposed. The activation energy according 
to our approach is determined by the mobility edge position in the conduction (valence) 
band. The dependence of the mobility edge on the magnetic order is obtained. Hence the 
magnetic order temperature dependence determines the activation energy temperature 
dependence. 

1. Introduction 

It is widely accepted that such transition metal oxides as NiO, COO and MnO are Mott 
insulators [l]. The theoretical description of these materials is traditionally based on a 
half-filled Hubbard model, where there is a lower, completely filled band and an upper, 
empty the band with the correlation gap between. The conduction in these materials is 
usually due to the carriers which are activated from the impurity levels. Further on we 
shall consider the electron in the conduction band (the problem of the hole in the valence 
band is equivalent). The compounds in question are also antiferromagnetics, and the 
magnetic order has a strong influence on their electricai properties. This influence 
manifests itself in the temperature dependence of the electroconductivity activation 
energy, the latter being larger in the antiferromagnetic phase than in the paramagnetic. 
We propose a possible explanation for the temperature dependence observed. 

2. Hamiltonian and theoretical formulation 

We accept the narrow-band model, i.e. we suppose that the Coulomb repulsion is much 
larger than the hopping integral. For the description of such asituationin [2] the adiabatic 
approximation was used based on the fact that the characteristic electronic frequencies 
are much larger than the characteristic spin subsystem frequencies and lead to the 
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decoupling of spin and charge degrees of freedom. The charge carrier in such an 
approximation is described by the Green function which may be written in the form: 

where H is a one-electron Hamiltonian 

The lattice is supposed to be cubic for simplicity and the hopping takes place only 
between the nearest neighbours. In equation (1) Ys is the wave-function which describes 
an arbitrary configuration which participates in the mixed state of the spin subsystem 
and P, is the statistical weight of such a configuration determined by the temperature. 

When describing the conductivity of such systems (they have been analysed more 
than once in the framework of the s-d model [3]) it was often supposed that the current 
is carried by the electrons activated from the impurity levels to the band edge, and this 
edge was obtained in some kind of effective medium approximation. The dependence 
of the edge position on magnetic order and hence on temperature was associated with 
the observed electroconductivity activation energy temperature dependence, 

However in [4] it was noted that this approach can be improved. After the adiabatic 
approximation is postulated the problem is equivalent to that of the electron in a static 
potential. Then we may use the concepts introduced for the description of the disordered 
system's conductivity, in particular Anderson localization theory. According to this 
theory the disorder leads to the existence of a mobility edge E,, i.e. the energy which 
separates localized states from the conducting ones. When the Fermi level E,  lies below 
the mobility edge the current is carried by the electrons activated from the Fermi level 
above the mobility edge. Hence for the activation energy A we obtain: 

A = E ,  - EF. (3) 

We suppose that the Fermi level is fixed by the impurities and does not depend upon 
temperature. The mobility edge does depend upon the magnetic order and hence upon 
temperature. Our task is to find this temperature dependence. 

Consider the following: according to Anderson localization theory (see e.g. [ 5 ] )  the 
diagonal in site representation matrix element of the random (unaveraged) Green 
function is: 

which is equivalent to the following power series: 

where the following notation is introduced: 

In ( 5 )  G(L) is the sum over all paths on the lattice with L steps starting and ending at site 
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1. To each intermediate site i there corresponds a matrix Ai. Each item in G(L) is the 
averaged product of these matrices multiplied by tL/EL+l. 

3. The mobility edge calculation 

It has been shown that the mobility edge is the convergence radius for the self-energy 
modified perturbation theory expansion, where the summation takes place only for the 
paths which have no self-intersections [5] .  Unfortunately, the structure of such series is 
highly complicated and the convergence radius is very difficult to obtain. There is, 
however, another approach when an approximate criterion of localization is formulated 
(see e.g. [6]). In our paper [4], for the analysis of the series of the type ( 5 )  a simple 
approximate criterion was formulated. This consists of identification of the mobility 
edge with the convergence radius of the series CL G(L) ,  which is obtained from series ( 5 )  
when ignoring the path self-intersections. We can use the theorem [7] according to which 
the series in question converges with probability unity if and only if the series X L ( G ( L ) )  
and X L  ( G ( L ) 2 )  converge, where the brackets mean the average (in our case thermo- 
dynamic). We introduce formally a small parameter 1/z, where z is the number of 
nearest neighbours. In the leading approximation with respect to 1/z the convergence 
radius of both averaged series coincide with the convergence radius of the series: 

where the brackets ( . . . ) L  denote the average over allpathsof the length L ;  the multiplier 
Z L  is the asymptotic number of the paths when L 9 1. 

To calculate the correlator we use the chain approximation due to Kirkwood [8]: 

In the equation ( 7 )  we need pay no attention to the multipliers' order, because all the 
correlators are the diagonal matrices: 

and 

As a result, for the mobility edge we obtain: 

IE,l = dW(1/4 4- (SlS2))(1/4 - (sz)2)-1/2 (10) 

where (S') is the averaged sublattice spin, (SI&) is the pair correlation function of the 
nearest-neighbour spins and W = 2zt is the bandwidth the conduction band would have 
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if all the spins were aligned ferromagnetically. It is worth noting that (10) coincides with 
the result for the bandwidth which was obtained in [9]. 

4. Electroconductivity activation energy 

Suppose that the electrons are excited from the impurity levels which fix the Fermi level. 
The temperature dependence of the activation energy defined by the equation 

is obvious. At  high temperatures ( T  
the activation energy we obtain: 

Tx)  ail the correlators are equal to zero, and for 

At T = 0, we may suppose that 

( S , S , )  = - (SZ)’. 

It is necessary to note that even at T = 0, (S‘) f 5 1/2 due to quantum spin fluctuations 
(e.g. from the spin-wave theory it follows that 1/2 - ((Sz)l = 112). Hence the extended 
states exist even at T = 0, and the width of the extended states band as can be seen from 
(10) is equal to W(1/4 - (Sz)2)1’‘. For the activation energy at T = 0 we obtain: 

A A F  = iW[l - (1/4 - (Sz)2)1’2]. (14) 
Hence we see that if we use the realistic value of the bandwidth W = 1 eV the difference 
between the activation energy in the antiferromagnetic and paramagnetic phases is of 
the order of 0.1 eV, which agrees with the experimental values [ 10-121, 
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